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ABSTRACT 

The Department of Defense (DoD) is researching methods to enhance energy security 

and reduce energy costs. The energy security of DoD installations relies on the 

commercial electricity grid. One method being considered to improve energy security and 

reduce energy costs is microgrids that include combinations of energy storage, energy 

sources, critical loads, and non-critical loads. A microgrid’s power demand and the 

benefits of a microgrid integrated with a power electronics enabled Energy Management 

System (EMS) is investigated in this thesis. The power demand of a single family 

household is analyzed. The peak power demand of the single family household displays 

the drawbacks of peak power demand on the commercial electricity grid and the 

installations receiving power from it. Drawbacks include reduced energy security due to 

blackouts and increased cost as a result of meeting the peak demand. One benefit of an 

EMS is its ability to island or continue supplying power to critical loads when the 

commercial electricity grid is lost. A second benefit is reduced power demand on the 

commercial electricity grid during peak power demand or on distributed resources (DR) 

while islanded by performing peak power control. The performance of peak power 

control by an EMS is demonstrated using a Simulink model and an experimental 

laboratory setup. The Simulink model and EMS functionality are validated with the 

laboratory experiments. The Simulink model is then used to demonstrate the reduction in 

peak power demand on the commercial electricity grid using an EMS on more complex 

loads such as motors and diode rectifiers. The Simulink model is also used to compare 

the power demand on the commercial electricity grid with and without the EMS.  
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EXECUTIVE SUMMARY 

The Department of Defense (DoD) is researching methods to enhance energy security 

and reduce energy costs [1]. One method the DoD is researching to increase energy 

security and reduce energy cost is making DoD facilities into self-sustainable systems or 

microgrids. A microgrid is a combination of energy storage, energy sources, critical loads 

and non-critical loads [2], [3].  A microgrid controlled by a power electronics based 

energy management system (EMS) can optimize the use of energy sources and energy 

storage systems to provide improved energy security and reduced energy cost. 

Specifically, an EMS can reduce a microgrid’s peak power demand on the commercial 

electricity grid or on distributed resources (DR). A block diagram of an EMS interfaced 

with the commercial electricity grid and a microgrid is shown in Figure 1. 

 

Figure 1. An EMS interfaced with the commercial electricity grid and a microgrid. 
 

The objective of this thesis was to investigate peak power demand of a microgrid 

and to perform peak power control using a power electronics based EMS that reduces a 

microgrid’s peak power demand such that energy security is improved and energy cost 

reduced. A physics based model was developed and validated using experimental 

prototyping, and then the model was used to simulate peak power control.  

An EMS creates the opportunity to manipulate power intelligently in a microgrid. 

Its functionality is demonstrated by modeling, simulation and experimental validation of 

the following scenarios: 
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1) Peak power control by tapping an energy storage system during high 

demand. 

2) Islanding mode by necessity (loss of power) or by choice. 

3) Peak power control by non-critical load shedding during transients. 

By accomplishing these goals, the EMS can be very useful in commercial 

electricity grid connected systems where there is a limit on the user’s power 

consumption. If the EMS keeps the load current below a set threshold at all times by load 

management and shedding, then the user can operate loads beyond their steady-state 

power limits without worrying about the circuit breaker interrupting power. 

Three scenarios are illustrated in Figure 2, where a microgrid with a single-phase 

power source and a battery pack is used to demonstrate the functionality of the EMS. The 

first scenario demonstrates how the peak rms current drawn from the main power source 

is limited by the EMS when the critical load increases. The EMS behaves as a current 

source, providing the supplemental current demanded by the loads and reducing the 

current demand on the main power source. The second scenario demonstrates islanding 

mode of operation. Islanding of the microgrid can occur when the load is so light that the 

battery, or stored energy, can provide all its current or when there is a fault or poor power 

quality in the main power source. In the second scenario, the EMS inverter operates as a 

voltage source. The third scenario demonstrates how the EMS can shed a non-critical 

load when the critical load increases, thus keeping the source rms current below a set 

threshold. The third scenario first provides supplemental current to reduce the main 

power source rms current and then sheds non-critical loads to maintain the main power 

source rms current below the set threshold.  

The EMS control algorithm was developed with the following goals, listed here in 

order of priority: 

1) Power must be available to the critical loads at all times. As an example, if 

the main power supply (commercial electricity grid) is down, then battery 

power will be used to support critical load operation.   
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2) Reduce the peak power demand of the microgrid on the main power 

source by using battery power and by non-critical load shedding. 

3) Maximize the state of charge of the battery. 

4) Make power available to non-critical loads. 

 

Figure 2. The scenarios used to demonstrate EMS functionality. 
 

A physics based model of the EMS was developed and implemented using 

Simulink software [4]. The model was validated using a power electronics based power 

conversion system designed to support laboratory development and rapid experimental 

validation for research and thesis projects [5] – [8]. The system includes a field 

programmable gate array (FPGA) development board [9] with input/output (I/O) ports, an 

insulated gate bipolar transistor (IGBT) power module, power supply, voltage/current 

sensors, analog/digital (A/D) converters, transistor-transistor logic (TTL) interface and a 

USB interface to communicate with a personal computer (PC). 
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The microgrid model, validated by experimental measurements, was used to 

simulate the EMS functionality in a microgrid.  The circuit for the simulation has two 

critical loads and two non-critical loads. The two critical loads are a single-phase diode 

rectifier and a resistor. The two non-critical loads are a capacitor-start, capacitor-run 

single-phase induction machine and a resistor. The EMS prioritized the non-critical 

machine load above the non-critical resistive load. 

Simulation results are shown in Figure 3, Figure 4, and Figure 5 for the following 

modes of operation, respectively:  

i. The EMS is fully operational.  The EMS provides half of the load current 

Iload when the load current Iload is larger than the EMS current threshold 

Iems-on.  A non-critical load is shed when the load current Iload exceeds the 

load shedding threshold Imax. 

ii. The EMS is operational without load shedding enabled.  The EMS 

provides half of the load current Iload when the load current Iload is larger 

than the EMS current threshold Iems-on but does not control the non-critical 

loads.  

iii. The EMS is disabled.  

In the simulation plots of Figure 3, the following events are labeled: 

1) The EMS current Iems turns on because the load current Iload crosses the 

EMS current threshold Iems-on. 

2) The non-critical resistive load is shed because the load current Iload 

exceeds the load shedding threshold Imax. 

3) The single-phase induction machine transitions from capacitor start to 

capacitor run, which reduces the load current Iload but has no effect on 

EMS operation. 

4) The diode rectifier is turned off and the load current Iload goes below the 

shed load restoration threshold Imaxoff. 
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5) The non-critical resistive load previously shed is now turned back on 

automatically. 

 

Figure 3. Simulation plots with the EMS fully operational. 

The EMS was fully operational for the simulation illustrated in Figure 3. It can be 

seen in Figure 3 that when the load current Iload exceeds the EMS current threshold Iems-on, 

the EMS supplies current to reduce the main power source current Ils. When the load 

current Iload exceeds the load shedding threshold Imax, the non-critical resistive load is 

shed to reduce the main power source current Ils. Lastly, when the load current Iload drops 

below the shed load restoration threshold Imaxoff, the non-critical resistive load is restored. 

The advantage of operating with load shedding enabled is that the load current 

Iload only briefly exceeds the maximum current threshold Imax established before shedding 

non-critical loads. The disadvantage is that the non-critical load may not be restored 

automatically when the system can support restoration of it. This can be seen in Figure 3 

after the machine load transitions to its capacitor-run circuitry, the non-critical resistive  
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load is not restored even though the system can support it. This is due to the limited 

capability of the EMS algorithm at this time and may be overcome by more capable 

algorithms in the future.   

In the simulation plots of Figure 4, the following events are labeled: 

1) The EMS current Iems turns on because the load current Iload crosses the 

EMS current threshold Iems-on. 

2) The single-phase induction machine turns on, but no loads are shed and 

the load current Iload exceeds the load shedding threshold Imax. 

3) The single-phase induction machine transition from capacitor start to 

capacitor run occurs and causes the load current Iload to drop below the 

load shedding threshold Imax.  

4) The diode rectifier is turned off but does not affect EMS operation. 

 

Figure 4. Simulation plots with the EMS load shedding disabled. 
 

The mode of operation with the EMS enabled but without the load shedding 

capability is illustrated in Figure 4.  The disadvantage of operating without load shedding 
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is that the system may exceed the maximum load current threshold Imax, which could 

result in loss of power to the entire system instead of just the non-critical loads.  

Comparing Figure 3 and Figure 4, we see that the load current peak is measurably 

reduced by the load shedding feature of the EMS. As a consequence, the peak of the 

current drawn from the main power source Ils is reduced. 

Without the EMS operating, the disadvantage is a less efficient and more robust 

main power source that must be capable of handling the peak power demand of its loads 

as shown in Figure 5. 

 

Figure 5. Simulation plots with the EMS disabled. 

This research presented problems associated with DoD facilities related to energy 

security and cost. It focused on the incorporation of electrical microgrids and DR within 

the present electrical distribution of DoD facilities as a solution. The functionality of a 

power electronics based EMS was discussed. A physics based model was experimentally 

validated and then used to compare the operation of a microgrid with and without the 

EMS. 
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I. INTRODUCTION 

A. BACKGROUND 

The Department of Defense (DoD) is researching methods to enhance energy 

security and reduce energy costs [1]. The energy security of DoD facilities rely on the 

commercial electricity grid. This places the operations of these facilities and the missions 

they support at risk. Additionally, the DoD energy costs, illustrated in Figure 1 for fiscal 

year 2011, due to facilities electrical demand was 65% of $4.12 billion, or $2.7 billion 

dollars.   This makes up 13.65% of all DoD energy costs [1]. 

 

Figure 1.   DoD energy costs. From [1]. 

One method the DoD is researching to increase energy security and reduce energy 

cost is making DoD facilities into self-sustainable systems or microgrids. A microgrid is 
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a combination of energy storage, energy sources, critical loads and non-critical loads [2], 

[3].   Energy storage and energy sources consist of distributed resources (DR) and/or the 

main power grid. DR or distributed energy resources (DER) are sources of electric power 

that are not directly connected with a bulk power transmission system [4]. They include 

energy generation and storage such as internal combustion engines, gas turbines, 

microturbines, photovoltaic (PV) systems, fuel cells, batteries and wind-power [3], [5]. 

Critical loads must be serviced at all times, while non-critical loads can be shed if power 

is insufficient. Thus, a microgrid is an integrated energy system that can operate in 

parallel with the grid or as an island. Objectives related to improved reliability, enhanced 

electrical system security, increased integration of renewable resources, and dynamic 

islanding can be realized through the use of microgrids [3], [5]. 

Power electronics is a key enabling technology to interface DR to the grid and to 

provide the control features necessary to build a more controllable power system  

[6]–[8]. A digitally controlled power electronics based energy management 

system (EMS) can provide  power flow metering and control, fault detection and 

correction, reliability improvements, improved electrical system security, increased 

generation efficiencies and other capabilities [9]–[13].  If an EMS is interfaced with the 

commercial electricity grid and a microgrid, then it can improve electrical energy security 

and reduce electrical energy cost with enhanced energy management. A block diagram of 

an EMS interfaced with the commercial electricity grid and a microgrid is shown in 

Figure 2. 

   

Figure 2.   An EMS interfaced with the commercial electricity grid and a microgrid. 
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The energy security of DoD facilities can be improved and the energy cost 

reduced without re-design of the present transmission and distribution system. This can 

be done by breaking a facilities distribution system into multiple EMS controlled 

microgrids [5]. The capability of an EMS controlled microgrid to dynamically shift to 

autonomous operation provides DoD facilities with the ability to ride through commercial 

electricity grid power failures without an interruption in operations. In addition, an 

islanded EMS controlled microgrid can dynamically reduce the electrical load demand on 

the DR such that the facility can operate indefinitely without the commercial electricity 

grid. Lastly, an EMS controlled microgrid can perform DR power flow control in order to 

reduce or increase the percentage of DR power supplied to electrical loads. Microgrids 

operating in parallel with the commercial electricity grid can reduce or increase the 

electrical power demand on the commercial electricity grid when it is financially 

advantages. Making DoD facilities into multiple microgirds operating in parallel with the 

commercial electricity grid will improve energy security and reduce energy costs. 

B. OBJECTIVE 

A microgrid controlled by an EMS can optimize the use of DR to provide energy 

security and reduce energy costs. Specifically, an EMS can reduce a microgrid’s peak 

power demand on the commercial electricity grid or on DR. The goal of this thesis is to 

investigate peak power demand of a microgrid and to perform peak power control using 

an EMS that reduces a microgrid’s peak power demand such that energy security is 

improved and energy cost reduced. 

C. APPROACH 

The power demand of a potential microgrid was analyzed first. For this research a 

single family home power demand was monitored. Second, the EMS was modeled and 

experimentally verified using the circuit in Figure 3. Third, the validated model was used 

to investigate scenarios with more complex loads such as motors and diode rectifiers. 

Lastly, the model with the complex loads was simulated with and without the EMS.   
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Figure 3.   Circuit schematic used to experimentally verify the EMS model. 

D. THESIS ORGANIZATION 

The power demand profile of a single family home representing a microgrid and 

its loads are presented in Chapter II. Physics based modeling, computer simulation in 

Simulink, and experimental validation of the EMS is discussed in Chapter III. A 

description of the hardware, the control software design, the equipment setup and 

performance is also included in Chapter III. More complex scenarios are explored using 

the experimentally verified Simulink model in Chapter IV. Electrical loads common to a 

single family home or a DoD facility are modeled and simulated in Chapter IV. 

Conclusions and recommendations for future research are presented in Chapter V. The 

Matlab code used to simulate the model and to plot various figures in the thesis is 

included in the Appendix. 
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II. MICROGRID ANALYSIS 

A. INTRODUCTION 

A microgrid is an electrical power system that can operate independently or in 

parallel with the grid [3]. In this chapter, the structure of a microgrid is discussed, the 

power demand profile for a potential microgrid is analyzed and the operating patterns of 

some common loads are presented.   

B. MICROGRID 

The microgrid concept can be applied to any subsystem currently attached to the 

distribution grid. The size of the microgrid can vary. Multiple coordinating microgrids 

may be necessary to support a single building or one microgrid may be sufficient to 

support a single family home. In either case, each microgrid coupled with an EMS should 

be sized based off the critical loads it supports and the DR available to support those 

critical loads.   

For the purposes of this research, a single family home was chosen to represent 

the loads of a potential microgrid. To apply the conclusions drawn from this approach to 

a larger building or multiple buildings, the power capability of the microgrid’s DR would 

have to be increased or the building(s) would have to be broken down into multiple 

microgrids capable of coordinating together or operating independently to support all the 

critical loads. 

A single family home electrical distribution system is illustrated in Figure 4. In a 

typical single family home, the load demand drives the current drawn from the 

commercial electricity grid. Distribution panel breakers only open if the current drawn 

exceeds the cable rating. The loads in the single family home are dependent on the power 

supplied by the commercial electricity grid. 
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Figure 4.   A single family home electrical distribution system. 

A single family home as a microgrid with an integrated EMS is illustrated in 

Figure 5. The switches shown are used by the EMS to perform load shedding and 

islanding. The bi-directional power converter is used to decrease or increase the current 

drawn from the commercial electricity grid or to support the electrical loads while 

disconnected from the commercial electricity grid. The distribution panel breakers are not 

shown, but would be located downstream of the islanding switch and upstream of the 

EMS load switches. Large loads that may consume a single breaker on a distribution 

panel are shown as a single load in Figure 5 and can be individually turned off by the 

EMS.   

 

Figure 5.   A single family home microgrid with an integrated EMS. 
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Loads designated as outlets or lighting in Figure 5 are smaller loads that can be 

supported by a single breaker. Loads that may be powered from the switch supplying the 

outlet load seen in Figure 5 are illustrated in Figure 6. These loads are emphasized 

because they cannot be considered controllable loads and have the ability to place a large 

power demand on the system. The EMS must shed all of the loads seen in Figure 6 if load 

shedding of the outlet is required. Additionally, if the EMS restores this switch, the same 

loads may start up immediately. This could cause an inrush current that results in another 

load shedding event. This cycle could repeat indefinitely without user intervention if the 

correct system logic is not implemented to ensure load oscillations such as this do not 

occur. Load oscillations are discussed further in Chapter IV.   

 

Figure 6.   Plug-in loads that an EMS cannot control directly.  

C. POWER DEMAND PROFILE OF A SINGLE FAMILY HOME 

1. Average Daily Power Demand Profile of a Single Family Home 

The power demand profile of a single family home was analyzed. The single 

family home data was retrieved from the Pacific Gas and Electric (PG&E) smart meter 

readings available online to all customers.  The annual hourly power usage PkW-hour is 

given by  

 
365

,
1

1

365kW hour annual average kW hour
d

P P 


   (1) 

and is used to calculate the average of the real power PkW-hour, annual average consumed 

during that hour daily.  The average hourly values are then given by  
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24

, ,
1

1

24kW hour average kW hour annual average
hour

P P  


   (2) 

to find the annual average power consumed per hour over 24 hours PkW-hour, average.   

The results are shown in Figure 7. The lines are only used to connect the data 

points together. The daily peak power demand of a single family home is illustrated in 

Figure 7. The home uses approximately 300 W during low power demand times and 

approximately 1.2 kW during peak power demand times on average. That is 

approximately four times as much power required during the peak power demand time. A 

similar power profile exists for every household. The minimum and maximum values 

will vary based on location and household usage, but the shape remains similar [14]. The 

peak power demand is what drives the generating capacity of the commercial electricity 

grid [14]. More specifically, about 20% of electrical generating capacity exists to meet 

peak power demand 5% of the time [3]. This requires the power utilities to keep 

generating capacity in reserve [3]. 

 

Figure 7.   A single family home average daily power demand. 

The annual average hourly power, 650 W, demanded by this home is shown in 

Figure 7 as well. The power consumed by the home for both curves remains the same; 
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however, the power required at any moment in time is significantly reduced by 

decreasing the peak power demanded and increasing the low power demand. In order to 

have this type of power demand profile a combination of DR and load management is 

necessary.  

Facilities that support DoD operations will have a different power demand profile 

than seen in a single family home but will still have peak power demand and low power 

demand.  An EMS altered to accommodate the critical and non-critical load demands of 

DoD facilities could reduce the peak power demanded by those facilities. This would 

enhance energy security and reduce energy costs without requiring significant changes to 

the present distribution system.      

2. Daily Power Demand Profile of a Single Family Home 

The power demand profile of the single family home discussed in Chapter II.C.1 

was recorded over a twenty-four hour period. The measured real power, reactive power, 

and apparent power demanded by the home are illustrated in Figure 8. The data was 

recorded using a Fluke 434 Power Meter. Data points were recorded at 30 s intervals. The 

lines in the plot connect the data points.   

The power demand profile shown in Figure 8 is slightly different then the power 

demand profile seen in Figure 7. The drastic changes in power demand are more clearly 

shown in Figure 8 than Figure 7. Multiple times during the day, the power demand went 

from between five and six kW to less than one kW. In most cases, these changes are the 

result of a single large load running. While the exact loads running during the peak power 

demands seen in Figure 8 are unknown, other measurements taken of loads operating in 

the home indicate that the peak power demands are due to the dryer and washer running 

cycles and/or the oven operating. As stated before, the peak power demanded from the 

commercial electricity grid can be reduced by supplementing it with energy from DR or 

by load shedding. During low power demand times energy from distributed 

generators (DG) can provide power to the operating loads or energy from the commercial 

electricity grid can provide power to the operating loads and charge batteries in order to 

maintain a constant power demand on the commercial electricity grid. 
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Figure 8.   Single family home power demand profile recorded on 9/12/2012.  

The current demand profile from the same data seen in Figure 8 is shown in 

Figure 9. The lines in the plot connect the data points. The profiles are identical in shape 

and differ only in magnitude. Since the home is powered from the commercial electricity 

grid, it is safe to assume the voltage is a constant 120 V. The commercial electricity grid 

current can be used in conjunction with the homes load current and an EMS current to 

make logic decisions concerning peak power control. Specifically, the EMS can 

determine if it should provide supplemental current to reduce the current demand on the 

commercial electricity grid, shed loads to reduce the load current demand and the current 

demand on the commercial electricity grid, or increase the current demand on the 

commercial electricity grid by charging batteries.   
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Figure 9.   Single family home current demand profile recorded on 9/12/2012. 

3. Individual Load Power Demand Profiles 

The power demand profiles of individual loads were recorded using a Fluke 434 

Power Meter. This was done to identify what loads were driving peak power demand and 

to identify cyclic loads whose operation could be delayed. Multiple recording modes and 

trials were done on each load to understand the general operating pattern and the power 

demand. The clearest description of the loads analyzed operating patterns are shown in 

Figures 10 through 15. 

The operating pattern of the clothes dryer is illustrated in Figure 10. The lines in 

the plot connect the data points. The data points were recorded at one second intervals. 

The voltage is an average of the separate line voltages supplied to the dryer. The current 

is the summation of the separate currents drawn by the dryer. The operating pattern 

displays the cyclic nature of the dryer and its high energy demand. The power demanded 

by the dryer creates the peak power conditions seen in Figure 8 and Figure 9. The real 

and the reactive power drawn by the dryer is displayed in Figures 11 and 12 for 

comparison with Figure 8.   
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Figure 10.   The current and voltage demand of the clothes dryer. 

 

Figure 11.   The real power demand of the clothes dryer. 
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Figure 12.   The reactive power demand of the clothes dryer. 

The operating pattern of a refrigerator can be seen in the bottom left of Figure 8 

from midnight to seven. A close up of the rms current drawn by the refrigerator is 

displayed in Figure 13. The lines connect the data points. Data points are recorded every 

five seconds. The current demanded by the refrigerator is not significant when compared 

to the dryer, but both loads have cyclic operating patterns. The refrigerator turns on and 

off for longer periods of time than the dryer. 

The operating pattern of a coffee pot is illustrated in Figure 14. The lines connect 

the data points. Data points are recorded every second. The rms current drawn by a coffee 

pot is shown in Figure 14. 

The operating patterns of the dryer, refrigerator, and coffee pot are all cyclic and 

predictable to a certain extent. Their operation can be delayed for a reasonable amount of 

time or other loads can be shed temporarily while they turn on. The advantages and 

disadvantages of load shedding while higher priority loads operate in order to minimize 

peak power demand is discussed in Chapter IV.  
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Figure 13.   An “on” cycle for a refrigerator. 

 

Figure 14.   Operating pattern of a coffee pot. 

D. CHAPTER SUMMARY 

In this chapter, the structure of microgrids was discussed, and a single family 

home electrical power demand was analyzed. Loads with cyclic operating patterns whose 

operation can be delayed or result in load shedding were discussed. In the next chapter, 

the Simulink model of the EMS controlled microgrid and experimental results are 

presented. 
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III. EMS CONTROLLED MICROGRID MODEL AND 
EXPERIMENTAL RESULTS 

A. INTRODUCTION 

In this chapter, the EMS functionality, Simulink model, and hardware are 

presented in detail. The functional objectives of the EMS are addressed first. The 

Simulink model and the circuit it represents are then covered. Third, the EMS hardware 

and software are presented, and lastly, the experimental results confirming the validity of 

the Simulink model are discussed.   

B. EMS FUNCTIONALITY 

The EMS creates the opportunity to manipulate power intelligently in a microgrid. 

Its functionality is demonstrated by modeling, simulation and experimental validation of 

the following scenarios: 

1) Peak power control by tapping an energy storage system during high 

demand. 

2) Islanding mode by necessity (loss of power) or by choice. 

3) Peak power control by non-critical load shedding during transients. 

By functionally supporting the above scenarios, the EMS can be very useful in 

commercial electricity grid connected systems where there is a limit on the user’s power 

consumption. If the EMS keeps the commercial electricity grid current, or the main 

power source current, below a set threshold at all times with supplemental current and 

load management or shedding, then the user can operate loads beyond the steady-state 

power limits without worrying about the circuit breaker interrupting service. The EMS 

can also be useful when the user pays different rates for power delivered at different 

times of the day. In this case, the EMS can manage the energy stored and energy drawn 

from the commercial electricity grid to reduce consumption when the power rates are 

higher. 
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Three scenarios are illustrated in Figure 15 where a microgrid with a single-phase 

main power source and a battery pack is used to demonstrate the functionality of the 

EMS [15]. The battery pack can be recharged from the grid or from DR such as PV cells, 

etc. Two sets of loads, one critical and the other non-critical, are used to demonstrate the 

EMS functionality. The first scenario, illustrated in the bottom left of Figure 15, 

demonstrates how the peak rms current drawn from the source is limited by the EMS 

when the critical load increases. The EMS behaves as a current source, providing 

supplemental current demanded by the loads and reducing the current demand on the 

main power source. The second scenario, illustrated in the bottom right of Figure 15, 

demonstrates islanding mode of operation. Islanding of the microgrid can occur when the 

load is so light that the battery, or stored energy, can provide all its current or when there 

is a fault or poor power quality in the main power source. In the second scenario, the 

EMS inverter operates as a voltage source. The third scenario, illustrated in the top right 

of Figure 15, demonstrates how the EMS can shed a non-critical load when the critical 

load increases, thus keeping the main power source rms current below a set threshold. In 

the third scenario the EMS first provides supplemental current to reduce the main power 

source rms current and then sheds non-critical loads to maintain the main power source 

rms current below the set threshold.  

The EMS control algorithm was developed with the following goals, listed here in 

order of priority: 

1) Power must be available to the critical loads at all times. As an example, if 

the main power supply (commercial electricity grid) is down, then battery power will be 

used to support critical load operation.   

2) Reduce the peak power demand of the microgrid on the main power 

source by using battery power and by non-critical load shedding. 

3) Maximize the state of charge of the battery. 

4) Make power available to non-critical loads. 
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Figure 15.   The scenarios used to demonstrate EMS functionality. 

C. EMS MODELING 

1. Simulink Model, Circuit Schematic and rms Computation 

A physics based model of the EMS was developed and implemented using 

Simulink software [16]. The top level Simulink model block diagram including the EMS, 

critical and non-critical loads, and the main power source are shown in Figure 16. The 

circuit schematic of the Simulink model is shown in Figure 17. 
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Figure 16.   The physics based Simulink model block diagram of the EMS. 

 

Figure 17.   Circuit schematic implemented in the Simulink model. 

The EMS block in Figure 16 includes the logic algorithm which controls the loads 

intelligently. The logic algorithm, seen in Figure 19, is implemented using a Matlab 
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function block. The load current, the status of the non-critical load, the availability of the 

main power source and a disable/clear pushbutton toggle are inputs to the Matlab 

function block. The Matlab function block outputs the signals that allow the EMS to 

provide stored energy as a current source or voltage source and to shed or restore non-

critical loads. 

The Matlab function block uses the rms value of the load current and the source 

voltage. The rms values of these signals are calculated in the EMS block and are given by   

 
2 2

rms avgI I


  (3) 

where Iavg is the average current.  In Equation (3), the relationship 

 2rms PI I  (4) 

 
2 p
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I
I


  (5) 

is used, where Ip is the peak current for a sinusoidal current.  Equation (5) is applicable to 

a rectified sine wave whose average value Iavg is given by 
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where 2w T . 

The Simulink model determines the average value by taking the absolute value of 

the input and sending it through two 5.0 Hz low pass filters as seen in Figure 18. The 

transfer function of the low pass filter is 

 ( ) c

c

w
H s

s w



 (7) 

where wc is the low pass filter cutoff frequency. The average value Iavg is then multiplied 

by the constant in (3) to obtain the rms value Irms. 
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Figure 18.   The RMS computation block diagram. 

2. EMS Control Logic 

The control logic used to draw supplemental current from the battery, to island the 

microgrid from the main power source, or to perform load shedding is performed in the 

Matlab function block. The function coding is listed in Section A of the Appendix. 

The logic used to determine if supplemental current should be provided from the 

battery compares the load current Iload to two thresholds, Iems-on and Iems-off. The value that 

the load current Iload must be greater than to turn on supplemental current is Iems-on. The 

value that the load current Iload must be less than to turn off supplemental current is Iems-off. 

The two values to turn on and to turn off supplemental current are necessary because the 

rms value for the load current Iload is a sinusoidal value, and using a single value for both 

decisions could result in the supplemental current oscillating on and off. Supplemental 

current logic is bypassed when the microgrid is islanded because the battery is providing 

all the power to the critical loads. 

The logic used to determine if the main power source is available is a relational 

operator block or a comparator. The rms voltage on the main power source is compared 

to a constant value of 100 V. If the rms voltage is less 100 V, then the source is lost and 

the EMS will disconnect from the main power source, or island, and provide power from 

the battery to the loads.   

The peak power control load shedding logic is shown in Figure 19 for the single 

non-critical load circuit illustrated in Figure 17. The logic is dependent on the status of 

the main power source, the load current, the status of the non-critical loads and a load 

shedding disable/clear pushbutton toggle. The value of the load current threshold to shed 

non-critical loads depends on whether the microgrid is connected to the main power 

source or islanded. The load current threshold to shed non-critical loads is referred to as  
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Figure 19.   The EMS load shedding control logic. 
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Imax. If the main power source is not available due to a fault, then Imax is set to a lower 

value to support sustained islanding operations. If the main power source is connected to 

the microgrid, then Imax is set to a higher value that supports peak power control. The 

same approach is used for the load current restoration threshold Imaxoff, which is used to 

restore non-critical loads that have been shed. If the main power source is not available, 

then Imaxoff is set to a lower value than if the source is powering the microgrid, similar to 

what was done with Imax. 

When the main power source is available, Imax is set to provide supplemental 

current from the battery prior to shedding any non-critical loads. If at any time the load 

current is between Imax and Imaxoff, the EMS maintains the non-critical loads’ previous 

switch state.   

The disable/clear push button toggle input is also incorporated into the load 

shedding logic. This allows a user to disable the load shedding capability or to clear a 

load shedding transient that did not restore the non-critical loads because the load current 

did not fall below the Imaxoff threshold. 

3. Critical and Non-critical Load Blocks 

The critical load and non-critical load blocks seen in Figure 16 are nearly 

identical in implementation. The non-critical load block implementation is shown in 

Figure 20. The two blocks use different resistive values, and the critical load block is 

made up of three resistive loads. The first input to both blocks is the voltage across the 

load Vcfil. The second input is the on/off signal. In the case of the critical load, the on/off 

signal is three multiplexed signals, one for each resistive load. The output from each 

block is the current through the load. The output of the blocks is computed using 

 load cfilI V R  (8) 

where R is the resistance of the load. 
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Figure 20.   The non-critical load block implementation. 

4. Power Source Block 

The power source block in the Simulink model represents the commercial 

electricity grid and is referred to as the main power source. It implements the following 

differential equations with respect to Figure 17: 

  

 0source s source s source cfilV sL I R I V     (9) 

  1
source source cfil s source

s

I V V R I
sL

    (10) 

 cfil source load emsI I I I    (11) 

  1 1
cfil cfil source load ems

cfil cfil

V I I I I
sC sC

     (12) 

where s represents differentiation in (9)-(12). 

The supplemental current from the battery is called the EMS current Iems. The 

EMS current Iems is implemented in the EMS block. It is implemented using an H-bridge 

model and is regulated using a proportional-integral (PI) controller to maintain the 

relationship 2ems loadI I  [17]. The output of the H-bridge model is a DC voltage Vdc that 

switches between positive, zero, and negative 200 Vdc. The EMS current Iems is found 

with 

  1
ems dc cfil

fil

I V V
sL

   (13) 

where Vdc is the switching DC voltage output from the H-bridge.   
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D. EMS HARDWARE 

The power electronics based power conversion system shown in Figure 21 and 

Figure 22 was designed to support laboratory development and rapid experimental 

validation for research and thesis projects [18]–[21]. It includes a field programmable 

gate array (FPGA) development board [22] with input/output (I/O) ports, an insulated 

gate bipolar transistor (IGBT) power module, power supply, voltage/current sensors, 

analog/digital (A/D) converters, transistor-transistor logic (TTL) interface and a USB 

interface to communicate with a personal computer (PC) as shown in the schematic of 

Figure 21. A Joint Test Action Group (JTAG or IEEE Standard 1149.1) programming 

cable interfaces the FPGA development board to a PC and is used to program the FPGA. 

The software development tool used for the FPGA is Simulink [16] with the addition of 

Xilinx System Generator software [23] which compiles the Simulink model to create 

VHDL code. The interface functionality of Figure 21 is realized by two printed circuit 

boards (PCBs) mounted above and below the FPGA development board as shown in 

Figure 22. The bottom PCB includes the power components such as the IGBT Integrated 

Power Module (IPM), current and voltage sensors, passive components and DC power 

supply. The IGBT IPM includes six diodes, six IGBTs and the gate drive circuits in the 

standard three phase-three legs configuration. For the EMS presented in this thesis, two 

legs are used in a single-phase H-bridge inverter configuration, while the third leg is used 

to interface with the battery pack. The PCB mounted on top of the FPGA development 

board includes a USB interface chip, USB connector to interface with the PC, A/D 

converters, voltage level shifters and several other connectors to interface with the other 

boards. 
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Figure 21.   The EMS electronics block diagram. 

 

Figure 22.   The FPGA based EMS electronics. 
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E. EMS SOFTWARE 

The Simulink top level block diagram of the EMS software is shown in Figure 23. 

The voltage and current sensor inputs are read in via the A/D conversion blocks on the 

lower left of Figure 23. The voltage A/D conversion block provides the DC bus voltage 

and the AC source voltage to the Controller 1 block. The DC bus voltage or DC-Link 

voltage Vdc is the voltage across the 990 µF capacitor seen in Figure 17. The current A/D 

conversion block provides the DC current from the battery pack, the EMS current Iems and 

the load current Iload to the Controller 1 block.   

Signals to silicon controlled rectifier (SCR) relay switches used to perform load 

shedding and to island or reconnect the microgrid are output from the FPGA via the relay 

control block and the eight pin TTL interface. 

The Chipscope interface block was used to interface the Chipscope program run 

on the PC with the EMS software [24]. The Chipscope software has a user interface that 

allows the user to provide inputs to the software via a USB cable. The Chipscope 

software and its interface were used for testing and to establish initial conditions for the 

experiments. The SCR relay switches for the non-critical load and for islanding could be 

directly controlled from Chipscope. The supplemental EMS current could be turned on 

and off from Chipscope as well.  

The data recorder block can be used to record data via the USB cable connecting 

the EMS and the PC. It was not used in this thesis. 

The Controller 1 block determines and carries out the logic decisions of the EMS. 

The block diagram of Controller 1 can be seen in Figure 24. The rms values of the load 

current Iload, the EMS supplemental current Iems and the main power source voltage are 

calculated in the three green blocks annotated as rms computation. The rms values are 

determined using the same method discussed in the Simulink model. The rms 

computation block diagram is shown in Figure 25. 
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Figure 23.   EMS software top level block diagram. 
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Figure 24.   EMS software Controller 1 block diagram. 
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Figure 25.   Block diagram of the rms computation block. 

The decision to provide EMS current from the battery is done in the red 

overcurrent detection block, where the rms value of Iload is compared to a constant to 

determine if it is above or below the thresholds Iems-on and Iems-off , respectively. If Iload is 

above Iems-on and the main power source is available, then EMS current Iems is provided.    

If Iload is below Iems-off and the main power source is available, then Iems is secured. If the 

main power source is not available, then this feature is disabled. 

The decisions to shed loads or restore loads that have been shed are performed in 

the Xilinx block annotated MCode located in the bottom right of Figure 24 and a function 

similar to that produced for the Simulink model is used. The code for the MCode function 

is in Section A of the Appendix. The output of the MCode block controls a SCR relay 

that disconnects or connects the non-critical load to the circuit. 

The Xilinx Relational block located in the center of Figure 24 compares the main 

power source voltage to a constant, 100 V, to determine if the main power source is 

available to supply power to the microgrid. The status of the main power source is then 

fed into the EMS current logic and used to disable it if the main power source is not 

available. The status of the main power source is also fed into the blue modulation block 

in Figure 24 where it is used to determine which reference value will modulate the 

H-bridge DC-AC inverter that makes up the second and third leg of the IGBT IPM. If the 

source is available, the reference comes from a PI controller that modulates the EMS 

current to maintain the relationship 2ems loadI I . If the source is lost, the reference is 

generated to maintain the capacitor Cfil voltage Vcfil at 110 V. The pulse width 
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modulation (PWM) mode for the DC-AC Inverter can be changed between bipolar and 

unipolar PWM using the Chipscope interface [25].  

The voltage on the DC-link Vdc between the boost converter and the DC-AC 

inverter, as seen in Figure 17, is maintained at 200 V. A PI controller in the magenta 

block annotated DC Link1 determines the reference DC current needed to maintain 

200 V. The reference DC current is fed into a PI controller in the magenta boost 

controller block, where it is compared to the actual DC current. The boost controller 

block outputs the control signal used to perform PWM. The modulation1 block compares 

a saw tooth signal to the control signal and outputs the gate control signals for the lower 

IGBT in the first leg of the IGBT IPM [25]. The boost converter is not bi-directional at 

this time and the top IGBT is kept off during all operation.     

F. EMS EXPERIMENTAL RESULTS 

1. Setup 

The EMS was set up in the lab using the hardware described in Chapter III.D. The 

circuit shown in Figure 17 was simulated using the Simulink model and validated in the 

lab. The source voltage Vs was 120 Vrms, the battery pack voltage Vbatt was 72 Vdc and 

was boosted to create a 200 Vdc bus Vdc as the input for the H-bridge DC-AC inverter. 

The EMS output filter included a capacitor Cfil of 13.2 µF, and an inductor Lfil of 

1.16 mH. The two loads were purely resistive. The critical load resistance was variable 

and consisted of three parallel resistors measuring 1200 Ω, 600 Ω, and 300 Ω, which 

could be switched in and out of the circuit. The non-critical load resistance was 400 Ω. 

The threshold for turning on EMS current Iems-on was set at 0.32 A, and the threshold for 

turning off EMS current Iems-off was set at 0.39 A. The threshold to shed non-critical loads 

Imax while connected to the grid was set at 0.78 A and while islanded was set at 0.44 A. 

The threshold to restore non-critical loads Imaxoff while connected to the grid was set at 

0.32 A and while islanded was set at 0.16 A. 
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2. Peak Power Control with the Main Grid Connected 

Peak power control was achieved in the lab by monitoring the rms current in the 

load. With the microgrid connected to the main power source, scenario one of Figure 15 

was implemented in the laboratory. In this scenario the H-bridge inverter in the EMS was 

controlled as a current source. As discussed in Chapter III.C, the EMS regulated the DC-

AC inverter to provide an EMS current Iems equal to half of the load current. This resulted 

in reducing the peak power drawn from the main power source without load shedding. 

This scenario is demonstrated with the experimental measurements displayed in 

Figure 26. The waveforms reveal that when the critical load increases Icritical, the total 

load current Iload is increased and the EMS provides supplemental current equal to half of 

the load current. This occurs because the total load current Iload exceeds Iems-on. The 

critical load resistance was decreased from 1200 Ω to 400 Ω. A delay between the load 

increase and the EMS current turning on can be seen in Figure 26. This delay was 

primarily due to the rms current computation algorithm. The top waveform in Figure 26 

Vcfil is the AC bus voltage across the capacitor Cfil in Figure 17.   

 

Figure 26.   Experimental measurements demonstrating peak current control with the 
EMS providing some of the load current. 
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Scenario three of Figure 15, depicting peak power control with non-critical load 

shedding, was implemented in simulations and then validated in the lab. In this scenario 

the critical load resistance was decreased from 400 Ω to 171 Ω. The resulting load 

current Iload was greater than the load current shedding threshold Imax, and the non-critical 

load was shed. The thresholds for load shedding Imax and load restoration Imaxoff  while 

connected to the grid were 0.78 A and 0.32 A, respectively. The simulation of the load 

shedding transient, illustrated in scenario three of Figure 15, using the Simulink model is 

shown in Figure 27. The experimental waveforms for the same scenario implemented in 

the laboratory set up are shown in Figure 28. The critical load current Icritical is never 

interrupted as shown by the bottom waveform of Figure 28. The load current Iload is 

reduced when it exceeds the load shedding threshold Imax. The load current Iload is reduced 

by shedding the non-critical load. The EMS current is not interrupted during the scenario.  

In both Figures 27 and 28, approximately 70 ms of delay between the critical load 

increase and the non-critical load shedding is seen. The delay between the two events is 

primarily due to the time required for the load current Iload rms value to update. 

 

Figure 27.   Simulated plots of the load shedding scenario with the main power source 
connected. Waveforms are offset from zero to correlate with Figure 28. 
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Figure 28.   Experimental plots of the load shedding scenario with the main power 
source connected. 

3. Peak Power Control in Islanding Mode 

Load shedding and load restoration events while the microgrid was islanded are 

demonstrated in Figures 29 and 30, respectively. For these experiments the thresholds for 

load shedding Imax and load restoration Imaxoff  were 0.44 A rms and 0.16 A rms, 

respectively. The critical load resistance was decreased from 1200 Ω to 400 Ω when 

recording the data captured in Figure 29. This caused the total load current Iload to 

increase beyond the threshold Imax. The EMS was the only power source providing load 

current, so it reacted by shedding the non-critical load. Note that the critical load is 

undisturbed while the non-critical load is shed. 

The critical load resistance was then increased from 400 Ω to 1200 Ω to generate 

Figure 30. This caused the EMS to restore the non-critical load since the total load 

current falls below the Imaxoff threshold. Note that the time delay during load restoration, 

as seen in Figure 30, is approximately 20 ms faster than the delay seen during load 

shedding, Figure 29. 
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Figure 29.   Experimental plots of load shedding while the microgrid is islanded. 

 

Figure 30.   Experimental plots of non-critical load restoration while the  
microgrid is islanded. 
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4. EMS Powering Critical Loads when the Main Power Source Fails 

In order to provide power to critical loads when the main power source fails, the 

EMS detects commercial electricity grid failure. This is scenario two illustrated in 

Figure 15. The voltage and current waveforms measured when the commercial electricity 

grid is disconnected, and the EMS begins operating as a voltage source are shown in 

Figure 31. Before the commercial electricity grid power failure, the non-critical and 

critical loads were on, both with a resistance of 400 Ω. The commercial electricity grid 

failure was initiated with a manual breaker. After the commercial electricity grid fails, the 

EMS provides power to the microgrid. The non-critical load is shed and only the critical 

load is serviced. It should be noted that the response time of the EMS was slow and 

resulted in an interruption in power of approximately 20 ms.   

 

Figure 31.   Experimental plots of the microgrid islanding and load shedding. 
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G. CHAPTER SUMMARY 

In this chapter, the physics based model of the EMS and microgrid were 

presented. The hardware used to implement the EMS was discussed. Three scenarios 

were presented to show the functionality of the EMS and to verify the physics based 

model as a tool for additional research. In the next chapter, the simulation results of the 

validated EMS model managing a more complex microgrid are discussed. 
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IV. EMS CONTROLLED MICROGRID MODEL SIMULATIONS 

A. INTRODUCTION 

The Simulink model presented in Chapter III has been experimentally validated. It 

is now a tool that can be used to design more complex systems and to predict their 

behavior. In particular, scenarios with more than two loads, which can be non-resistive, 

can be simulated to demonstrate more aspects of the EMS functionality.   

B. LOAD MODELING 

1. Single-Phase Induction Machine 

An unsymmetrical single-phase induction machine was used to simulate a motor 

load in a household. For the following simulations, a single phase, 4-pole, ¼-hp, 110 V, 

60 Hz capacitor-start, capacitor-run machine is used. This was chosen because machine 

variables and a model of them were readily available from [26] and [27], respectively. It 

was also chosen because of the likelihood of this type of load in a single family home or 

DoD facility.   

2. Single-Phase Diode Rectifier 

A single-phase diode rectifier was used to simulate a load such as a PC power 

supply or other similar electronic power supplies. The complexity of this model was 

limited to the diode rectifier and a resistive load. This was chosen because a model was 

readily available from [28] and because of the likelihood of this type of load in a single 

family home or DoD facility. 

C. EMS MANAGING MORE COMPLEX LOADS 

1. Setup 

The circuit in Figure 32 was modeled and simulated using Simulink. The circuit 

consists of four loads, two critical and two non-critical. The two critical loads are a 

single-phase diode rectifier and a resistor. The two non-critical loads are a single-phase 

induction machine and a resistor. The EMS prioritizes the non-critical motor load above 
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the non-critical resistive load. The load shedding threshold Imax is set to 43 A rms. The 

shed load restoration threshold Imaxoff is equal to the load shedding threshold minus the 

peak non-critical load current, which is 16 A rms. The EMS current threshold Iems-on is 

half of the load shedding threshold or 21.5 A rms. The threshold to secure EMS current 

Iems-off is 90% of Iems-on or 19.35 A rms. The simulation is 4.0 s long. Both the resistive 

loads turn on at 0.11 s. The diode rectifier load turns on at 0.4 s and off at 3.0 s. The 

motor load turns on at 0.6 s and remains on for the rest of the simulation.  

 

Figure 32.   Circuit schematic of the simulated scenario. 

Three simulations were performed to show the behavior of the microgrid with and 

without the EMS. Simulation results are shown in Figure 33, Figure 36, and Figure 37 for 

the following modes of operation, respectively:  

i. The EMS is fully operational.  The EMS provides half of the load current 

Iload when the load current Iload is larger than the EMS current threshold 

Iems-on.  A non-critical load is shed when the load current Iload exceeds the 

load shedding threshold Imax. 



 39

ii. The EMS is operational without load shedding enabled.  The EMS 

provides half of the load current Iload when the load current Iload is larger 

than the EMS current threshold Iems-on but does not control the non-critical 

loads. 

iii. The EMS is disabled. 

2. EMS Fully Operational 

The rms values of the source current Ils, load current Iload, and EMS current Iems, 

are plotted together with the load current thresholds in Figure 33. The Iems-off threshold is 

not shown in Figure 33. In the simulations plots of Figure 33, the following events are 

labeled: 

1) The EMS current Iems turns on because the load current Iload crosses the 

EMS current threshold Iems-on. 

2) The non-critical resistive load is shed because the load current Iload 

becomes larger than the load shedding threshold Imax. 

3) The single-phase induction machine transitions from capacitor-start to 

capacitor-run, which reduces the load current Iload but has no effect on 

EMS operation. 

4) The diode rectifier is turned off and the load current Iload goes below the 

shed load restoration threshold Imaxoff. 

5) The non-critical resistive load previously shed is now turned back on 

automatically. 

The EMS was fully operational for the simulation illustrated in Figure 33. It can 

be seen in Figure 33 that when the load current Iload exceeds the EMS current threshold 

Iems-on, the EMS supplies current Iems to reduce the main power source current Ils. The 

motor start at 0.6 s increases the load current Iload above the load shedding threshold Imax. 

The EMS sheds the non-critical resistive load to reduce the main power source current Ils 

as seen in Figure 34. This reduces the load current Iload below the load shedding threshold 

Imax during the motors start up cycle. The circuit reaches a steady-state condition just 
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before 3.0 s, and then the diode rectifier turns off at 3.0 s. This causes the load current 

Iload to drop below the shed load restoration threshold Imaxoff, and the non-critical resistive 

load is restored.  

 

Figure 33.   Simulation plots with the EMS fully operational. 

  

Figure 34.   Simulated waveforms showing a lower priority non-critical load being shed. 
Vcfil is 1/100th of actual value. Currents are 1/40th of actual values. Each 

waveform is offset from zero by multiples of 2. 
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The shed load restoration threshold Imaxoff is the load shedding threshold Imax 

minus the peak non-critical load current. This threshold was chosen to prevent non-

critical load oscillations when shedding loads. A non-critical load restoration threshold 

above this value could result in non-critical load oscillations as illustrated in Figure 35. 

In the simulation plots of Figure 35, the following events are labeled: 

1) The EMS current Iems turns on because the load current Iload crosses the 

EMS current threshold Iems-on. 

2) The non-critical resistive load is shed because the load current Iload 

becomes larger than the load shedding threshold Imax. 

3) The non-critical resistive load is restored because the load current Iload 

drops below the shed load restoration threshold Imaxoff. 

4) The non-critical resistive load is turned on and off by the EMS because the 

shed load restoration threshold Imaxoff is too high. 

5) The single-phase induction machine transitions from capacitor-start to 

capacitor-run, and the load current Iload drops below and stays below the 

load shedding threshold Imax. 

6) The diode rectifier is turned off but does not affect EMS operation. 

Figure 35 was generated using an Imaxoff threshold of 40 A rms. The Imaxoff 

threshold of 40 A rms resulted in load oscillations upon shedding of any of the non-

critical loads. The disadvantage of a threshold to restore shed loads that ensures no load 

oscillations is a system that does not maximize the power available to it. Specifically, 

non-critical loads whose operation would not result in the load current exceeding Imax are 

still prevented from operating unless operator action is taken. This is evident in Figure 33 

and Figure 35. The case where the shed non-critical load could have been restored 

without exceeding the Imax threshold is illustrated in Figure 33. At approximately 2.0 s, 

the motor transitions from capacitor-start to capacitor-run, and a drop in the load current 

is observed. After this event, the shed non-critical resistive load could have been restored 

without exceeding Imax. The expected load current Iload if the shed non-critical resistive 
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load were restored following the motors transition from capacitor-start to capacitor-run is 

seen in Figure 35 between 2.5 and 3.0 s. A more capable algorithm is needed to 

overcome this drawback, but for the hardware implemented in the lab and the Simulink 

model, it was overcome with operator action to restore shed non-critical loads. This was 

implemented with a disable/clear load shedding user input for the EMS. 

 

Figure 35.   Simulation plots with the EMS fully operational, but with an Imaxoff value set 
high enough to cause load oscillations.  

3. EMS with Load Shedding Disabled 

In the simulations plots of Figure 36, the following events are labeled: 

1) The EMS current Iems turns on because the load current Iload crosses the 

EMS current threshold Iems-on. 

2) The single-phase induction machine turns on but no loads are shed and the 

load current Iload exceeds the load shedding threshold Imax. 

3) The single-phase induction machine transitions from capacitor-start to 

capacitor-run and causes the load current Iload to drop below the load 

shedding threshold Imax.  
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4) The diode rectifier is turned off but does not affect EMS operation. 

The mode of operation with the EMS enabled but without the load shedding 

capability is illustrated in Figure 36. The disadvantage of operating without load 

shedding is that the system may exceed the maximum load current threshold, which could 

result in loss of power to the entire system instead of just the non-critical loads. The 

advantage of operating without load shedding is a circuit that always responds to load 

demand as long as circuit breaker ratings are not exceeded. Comparing Figure 33 and 

Figure 36, we see that the load current peak is measurably reduced by the load shedding 

feature of the EMS. As a consequence, the peak of the current drawn from the main 

power source Ils is reduced.  

 

Figure 36.   Simulation plots with the EMS load shedding disabled. 

4. EMS Disabled 

The results of the simulation with the EMS disabled are shown in Figure 37. In 

this case the source must support all the loads at any time. The plots clearly show that 

Iload is equal to Ils. The disadvantage of such a system is the peak power demand it places 
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on the main power source. It requires a main power source that is sized to support the 

peak power demand but typically operates at a lower power demand that is less efficient. 

 

Figure 37.   Simulation current plots with the EMS disabled. 

D. CHAPTER SUMMARY 

In this chapter, the simulation results of the validated EMS model managing a 

more complex microgrid were discussed. The simulation was run with the EMS fully 

operational, the EMS without load shedding, and the EMS disabled. Advantages and 

disadvantages of each mode of EMS operation were addressed. 
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V. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSIONS 

Problems associated with DoD facilities related to energy security and cost were 

presented in this thesis. One of many solutions that DoD facilities could benefit from 

incorporating were presented. Specifically, the incorporation of electrical microgrids and 

DR within the present electrical distribution of DoD facilities were focused on.   

The power demand of a single family home was analyzed. The impact of peak 

power demand on the commercial electricity grid was emphasized. The difference 

between the average power demanded and the peak power demanded was discussed. A 

method of peak power control that would result in improved energy security and reduced 

energy cost was introduced. 

Next, the functionality of a power electronics based EMS operating in a microgrid 

was presented. A physics based model was developed, experimentally validated and then 

used to study the functionality of the EMS. Operation of a microgrid with and without the 

EMS was simulated and compared. The comparison focused on the benefits and 

drawbacks of the EMS ability to provide supplemental current and perform load 

shedding. Specifically, the peak power demand on the main power source was reduced to 

below an established threshold, but the operation of non-critical loads was not 

maximized. The benefit of an EMS capable of islanding a microgrid is improved energy 

security.   

Several function details were identified that can affect the EMS performance. The 

dependence of the EMS on the response time of the rms calculation was discussed. The 

setting of thresholds to avoid load oscillations was addressed. Lastly, an interruption in 

power when islanding was identified. 

B. FUTURE RESEARCH 

An EMS can significantly improve power reliability, availability, efficiency and 

quality and these advantages should be explored in future research.   
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The ability to restore non-critical loads in larger microgrid circuits needs to be 

pursued in future research if load shedding is to become a viable option to reduce peak 

power demand. With the logic presented in this thesis, it is reasonable to assume that load 

shedding would perform no differently than a manual circuit breaker if more non-critical 

loads were incorporated into the microgrid. The restoration of non-critical loads 

following a transient without user intervention is a major benefit of load shedding. 

The EMS did not allow bi-directional power flow between the microgrid and the 

energy storage in this thesis. Future research should be done on the benefits of bi-

directional power flow to reduce peak power demand and increase low power demand. It 

is presumed that the overall benefit would be a more constant power demand seen by the 

main power source, which could increase the efficiency of the main power source. 

Future research should be done to determine the impact on cost savings of 

prioritizing energy security over cost savings. No logic was incorporated to manage the 

battery power level and to prevent it reaching levels that would risk energy security 

before cost savings. More specifically, the battery was permitted to discharge 

indefinitely. Additionally, the battery capacity and size needed to make the EMS a viable 

option for large buildings or sites needs to be researched to determine the adequacy of an 

EMS for such an application. 

Future research into other methods of determining an rms value would benefit the 

response time of the system. The rms calculation used to make logic decisions delayed 

the required action. The amount of delay seen may be acceptable for some applications 

but for many a quicker response time is required.   
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APPENDIX.  MATLAB M-FILES 

A. HARDWARE LOAD SHEDDING FUNCTION FILE 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%31 October 2012, EMS Load Shedding Function for Hardware 
%This function implements Load Shedding for the EMS. 
function [ShedLoad2,Imax]=fcn1(Load2_on,source_on,Iload,disable_clear) 
 
 
%******Load constants that the EMS depends on to make decisions****** 
if source_on; 
%The load shedding rms current threshold, 0.78A rms, when grid 
connected. 
    Imax=xfix({xlUnsigned,12,9},0.78); 
%The load restoration rms current threshold, 0.32A rms, when grid 
connected.      
    Imaxoff=xfix({xlUnsigned,12,9},0.32);   
else 
%The load shedding rms current threshold, 0.44A rms, when islanded. 
    Imax=xfix({xlUnsigned,12,9},0.44); 
%The load restoration rms current threshold, 0.16A rms, when islanded.        
    Imaxoff=xfix({xlUnsigned,12,9},0.16);        
end 
  
%******************Persistent Variables******************************* 
%Persistent variables are saved locally and thus still exist when the  
%hardware steps out of this function and then back into this function 
%on the next time step. 
  
%ShedLoadXin represents the shed or don’t shed status of loads. shed=1, 
%don’t shed=0 
persistent ShedLoad2in, ShedLoad2in = xl_state(0, {xlBoolean}); 
 
%Boolean variables for easy assignments of a one or zero value.   
one=xfix({xlBoolean},1);  
zero=xfix({xlBoolean},0); 
 
%******************Load Shedding Decision****************************** 
%A boolean 1 disables/clears any load shedding. 
if disable_clear;    
    ShedLoad2in=zero;     
%If more than one non-critical loads were supplied then based off a 
different persistent variable clear the correct one.    
else 
    if Iload>Imax; 
            if Load2_on; 
                ShedLoad2in=one; %Shed the non-critical load 
%If more than one non-critical loads were supplied then the lower the 
load number the higher the priority. The logic decisions would continue 
as seen below. 
%             elseif Load1;    
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%                 ShedLoad1in=zero; 
            end 
    elseif Iload<Imaxoff; 
        ShedLoad2in=zero; %Restore the non-critical load 
    end 
end 

B. MATLAB SIMULINK MODEL M-FILES 

1. Initial Condition M-File for Resistive Load Case 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%5 February 2013, Model Simulation Initial Conditions 
%Load model characteristics taken from Prof. Oriti and 
%Prof. Julian simulation model initial condition file  
%EMS_ic_v4 dated 23 April 2012 or as otherwise  
%annotated in this file. 
  
%Time step and simulation length 
tstep=1e-6;    
tstop=1;     
split=10;   
%Make split > tstop to run the simulation with EMS  
%only, =1 to run first half with and second half  
%without EMS, and =0 to run without EMS. 
  
%Five Hz LPF used twice in series to calculate RMS 
%values for current/voltage             
wc=2*pi*5;   
  
%-----------------------EMS Parameters---------------------- 
%Load operating times 
Load1Start=0.11; 
Load1Stop=tstop; 
Load2Start=0.11; 
Load2Stop=tstop; 
%Increase Load transient starts at 0.356seconds 
Load3Start=0.356;    
Load3Stop=tstop; 
Load4Start=0.11; 
Load4Stop=tstop; 
  
%Lose the source voltage start time 
LoseVs=tstop;       
  
%----------------------Source Parameters------------------------  
%-----Source Voltage----- 
%Peak value used in Simulink for source model 
V_phase = 120*sqrt(2); 
  
%-----generator 1------ 
Ls1=4e-6; 
Cfil1=13.2e-6;   
%Lfil in lab=1.16mH 



 49

Rs1=0.01; 
  
%--------------------Load Parameters--------------------------- 
%-----Resistors----- 
%I=0.1A rms with V=120V rms 
Rload_C1=1200;   
%I=0.2A rms with V=120V rms 
Rload_C2=600;    
%I=0.4A rms with V=120V rms 
Rload_C3=300;   
%I=0.3A rms with V=120V rms or 1200//600 
Rload_NC1=400;   
  
%---Single Phase Capacitor Start Capacitor Run Motor Load--- 
%Parameters from Krause, Analysis of Electrical Machinery  
%and Drive Systems 
%omega = 2*pi*60;%Modify this variable to change reference frame 
omega_b = 2*pi*60; 
omega_in = 2*pi*60; 
twopiby3 = 2*pi/3; 
wbby2H = omega_b/2/0.5; 
poles = 4; 
polesby2J = poles/2/.0146; 
  
%Parameters from page 384 of Krause 
capacitor=1/14.5/omega_b; 
Zc_run=172; 
capacitor_run=1/Zc_run/omega_b; 
rC=3; 
rC_run=9; 
NS_by_Ns=1.18; 
Xms =66.8; 
XmS =92.9; 
  
rs=2.02; 
rS=7.14; 
rr = 4.12; 
rR = 5.74; 
Xls =2.79; 
XlS=3.22; 
Xlr = 2.12; 
XlR=2.95; 
  
% Eqs 10.4–39 to 10.4–42 of Krause 
coeff_mat=[Xls+Xms 0 Xms 0; 0 XlS+XmS 0 XmS; Xms 0 Xlr+Xms 0; 0 XmS 0 
XlR+XmS]; 
inv_coeff_mat=inv(coeff_mat); 
  
%-----Diode Rectifier Load----- 
%EC3150 Software lab#4 - Diode Rectifier - Dr. Giovanna Oriti  
%initial conditions file for model ec3150_software_lab4.mdl 
ampl=29*sqrt(2); 
fund=60;  
ws=2*pi*fund; 
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Ls=200e-6;  %original 
%Ls=2e-4;  %reduced source inductance 
Rs=5e-3; 
Rload=10; 
Cdc=1100e-6; 
  
%-----H-Bridge Model----- 
%EC3150 Software lab#5 - H-bridge inverter - Dr. Giovanna Oriti  
%initial condition file for model ec3150_software_lab5.mdl 
  
Kp_v=0.06;  
Ki_v=5000;  
sw_freq=15000; 
Vdc=200; 
%A 1 is Bipolar PWM. A 0 is Unipolar PWM. Unipolar PWM used. 
PWM_mode=0;  
Lfil=1.16e-3; 
  
%Parameters used in lab but not for EMS model 
%Vdc=130; original in lab 
%vo_ref=120*sqrt(2)*2/pi; 
%turns=28/115; 
%Rload=2000; 
%Lin=3.22e-3;   
%tstep = 1e-6; 

2. Load Shedding and EMS Current Function M-File for Resistive Load 
Case 

function [ShedLoad2,EMSvoltageon,Imax,EMScurrenton]... 
    = EMS(Load2_on,source_on,disable_clear,Iload) 
%This function implements the EMS 
  
%*********************Persistent Variables***************** 
%Persistent variables are saved locally and thus still  
%exist when the simulation steps out of this function  
%and then back into this function on the next time step. 
  
persistent ShedLoad2in; 
if isempty(ShedLoad2in); 
    ShedLoad2in=0;     
end 
persistent EMScurrent; 
if isempty(EMScurrent); 
    EMScurrent=0; 
end 
persistent EMSvoltage; 
if isempty(EMSvoltage); 
    EMSvoltage=0; 
end 
  
%Determine Imax based off the source current being available 
if source_on>0.6; 
    Imax=0.78; 
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    Imaxoff=0.32; 
    EMSvoltage=0; 
    %Determine if supplemental EMS current should be provided or not. 
    if Iload>0.39;  %Iems-on=0.39 
        EMScurrent=1; 
    elseif Iload<0.32   %Iems-off=0.32 
        EMScurrent=0; 
    end 
%If the source is not availabe use these thresholds     
else 
    Imax=0.44; 
    Imaxoff=0.16; 
    EMSvoltage=1; 
    EMScurrent=0; 
end 
  
%Determine if Non-Critical Loads should be shed or restored. 
if disable_clear>0.6; 
    ShedLoad2in=0; 
else 
    if Iload>Imax; 
        if Load2_on>0.6; 
            ShedLoad2in=1; 
        end 
    elseif Iload<Imaxoff; 
        ShedLoad2in=0; 
    end 
end 
     
%***Assign the output values to the persistent variable values*** 
%A 0 allows the load to turn ON 
ShedLoad2=ShedLoad2in;       
%A 1 turns on the EMS current 
EMScurrenton=EMScurrent;     
%A 1 disconnects the source and turns on EMS voltage 
EMSvoltageon=EMSvoltage;  

3. Initial Condition M-File for Complex Load Case 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%5 February 2013, Model Simulation Initial Conditions 
%Load model characteristics taken from Prof. Oriti and 
%Prof. Julian simulation model initial condition file  
%EMS_ic_v4 dated 23 April 2012 or as otherwise  
%annotated in this file. 
  
%Time step and simulation length 
tstep=1e-6;    
tstop=4;     
split=10;   
%Make split > tstop to run the simulation with EMS  
%only, =1 to run first half with and second half  
%without EMS, and =0 to run without EMS. 
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%Five Hz LPF used twice in series to calculate RMS 
%values for current/voltage             
wc=2*pi*5;   
  
%--------------------Load operating times------------------- 
  
%Critical Resistive Load 
Load1Start=0.11; 
Load1Stop=tstop; 
Load2Start=0.11; 
Load2Stop=tstop; 
Load3Start=0.11;    
Load3Stop=tstop; 
%Induction Machine Load 
Load4Start=0.6; 
Load4Stop=tstop; 
%Non Critical Resistive Load 
Load5Start=0.11; 
Load5Stop=tstop; 
%Rectifier Load 
Load6Start=0.4; 
Load6Stop=3; 
  
%Lose the source voltage 
LoseVs=tstop;        
%Set to 0 to Disable/Clear Load Shedding 
%Set to any value >tstop to enable Load Shedding 
Disable_Clear=10;  
  
%----------------------Source Parameters------------------------  
%-----Source Voltage----- 
%Peak value used in Simulink for source model 
V_phase = 120*sqrt(2); 
  
%-----generator 1------ 
Ls1=4e-6; 
Cfil1=13.2e-6;   
%Lfil in lab=1.16mH 
Rs1=0.01; 
  
%-----------------------Load Parameters------------------------ 
%-----Resistors----- 
%Critical Lighting 
%I=1.5A rms with V=120V rms, represents 3 Lightbulbs in parallel 
Rload_C1=80;   
%I=1.5A rms with V=120V rms, represents 3 Lightbulbs in parallel 
Rload_C2=80;    
%I=1.5A rms with V=120V rms, represents 3 Lightbulbs in parallel 
Rload_C3=80;    
%Non-Critical Lighting 
%I=8A rms with V=120V rms, represents 16 Lightbulbs in parallel 
Rload_NC1=8;    
  
%---Single Phase Capacitor Start Capacitor Run Motor Load--- 



 53

%Parameters from Krause, Analysis of Electrical Machinery  
%and Drive Systems 
%omega = 2*pi*60;%Modify this variable to change reference frame 
omega_b = 2*pi*60; 
omega_in = 2*pi*60; 
twopiby3 = 2*pi/3; 
wbby2H = omega_b/2/0.5; 
poles = 4; 
polesby2J = poles/2/.0146; 
  
%Parameters from page 384 of Krause 
capacitor=1/14.5/omega_b; 
Zc_run=172; 
capacitor_run=1/Zc_run/omega_b; 
rC=3; 
rC_run=9; 
NS_by_Ns=1.18; 
Xms =66.8; 
XmS =92.9; 
  
rs=2.02; 
rS=7.14; 
rr = 4.12; 
rR = 5.74; 
Xls =2.79; 
XlS=3.22; 
Xlr = 2.12; 
XlR=2.95; 
  
% Eqs 10.4–39 to 10.4–42 of Krause 
coeff_mat=[Xls+Xms 0 Xms 0; 0 XlS+XmS 0 XmS; Xms 0 Xlr+Xms 0; 0 XmS 0 
XlR+XmS]; 
inv_coeff_mat=inv(coeff_mat); 
  
%-----Diode Rectifier Load----- 
%EC3150 Software lab#4 - Diode Rectifier - Dr. Giovanna Oriti  
%initial conditions file for model ec3150_software_lab4.mdl 
ampl=29*sqrt(2); 
fund=60;  
ws=2*pi*fund; 
Ls=200e-6;  %original 
%Ls=2e-4;  %reduced source inductance 
Rs=5e-3; 
Rload=10; 
Cdc=1100e-6; 
  
%-----H-Bridge Model----- 
%EC3150 Software lab#5 - H-bridge inverter - Dr. Giovanna Oriti  
%initial condition file for model ec3150_software_lab5.mdl 
  
Kp_v=0.06;  
Ki_v=5000;  
sw_freq=15000; 
Vdc=200; 
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%A 1 is Bipolar PWM. A 0 is Unipolar PWM. Unipolar PWM used. 
PWM_mode=0;  
Lfil=1.16e-3; 
  
%Parameters used in lab but not for EMS model 
%Vdc=130; original in lab 
%vo_ref=120*sqrt(2)*2/pi; 
%turns=28/115; 
%Rload=2000; 
%Lin=3.22e-3;   
%tstep = 1e-6; 

4. Load Shedding and EMS Current Function M-File for Complex Load 
Case 

function [ShedLoad1,ShedLoad2,EMSvoltageon,Imax,EMScurrenton]... 
    = EMS(Load1_on,Load2_on,source_on,disable_clear,Iload) 
%This function implements the EMS 
  
%*******************Persistent Variables*********************** 
%Persistent variables are saved locally and thus still exist  
%when the simulation steps out of this function and then back  
%into this function on the next time step. 
%timerup maintains 0.15 seconds between shedding NC loads 
timerup=300000;        
persistent ShedLoad1in; 
if isempty(ShedLoad1in); 
    ShedLoad1in=0;     
end 
persistent ShedLoad2in; 
if isempty(ShedLoad2in); 
    ShedLoad2in=0;     
end 
persistent timer; 
if isempty(timer); 
    timer=timerup;     
end 
persistent EMScurrent; 
if isempty(EMScurrent); 
    EMScurrent=0; 
end 
persistent EMSvoltage; 
if isempty(EMSvoltage); 
    EMSvoltage=0; 
end 
  
%Determine Imax based off the source current being available 
if source_on>0.6; 
    Imax=43; 
    Imaxoff=Imax-27;    %Restore when Iload<max(Iload_NC)  
    EMSvoltage=0; 
    %Determine if supplemental EMS current should be provided or not. 
    if Iload>Imax/2; 
        EMScurrent=1; 
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    elseif Iload<0.9*Imax/2; 
        EMScurrent=0; 
    end 
else 
    Imax=20; 
    Imaxoff=4.5; 
    EMSvoltage=1; 
    EMScurrent=0; 
end 
  
%Determine if Non-Critical Loads should be shed or restored. 
if disable_clear>0.6; 
    ShedLoad2in=0; 
    ShedLoad1in=0; 
else 
%The timer allows 0.1 seconds for power to decrease below Imax 
    if Iload>Imax && timer>timerup;                  
        if Load2_on>0.6; 
            ShedLoad2in=1; 
            timer=0;                 
        elseif Load1_on>0.6; 
            ShedLoad1in=1; 
            timer=0; 
        end         
    elseif Iload<Imaxoff && timer>timerup; 
        ShedLoad1in=0; 
        ShedLoad2in=0; 
    else 
        timer=timer+1; 
         
    end 
end 
%***Assign the output values to the persistent variable values*** 
%A 0 allows the load to turn ON 
ShedLoad1=ShedLoad1in;       
ShedLoad2=ShedLoad2in; 
%A 1 turns on the EMS current 
EMScurrenton=EMScurrent;     
%A 1 disconnects the source and turns on EMS voltage 
EMSvoltageon=EMSvoltage;     

C. DATA PLOTTING M-FILES 

1. M-File for Figure 7 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%25 October 2012, House Microgrid Usage Plotter 
  
%These data points were taken at hourly intervals over a year. 
%This file averages each hourly reading to portray the average peak  
%periods throughout a year for a house located in Monterey, CA. 
  
close all 
clear all 
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clc 
 
%Read the data from the xlsx file 
[NUMR,TXTR,RAWR]=xlsread(‘House_Annual_Data’,’Compiled’,’A1:NC26’); 
  
figure(1) 
time=NUMR(1:24,1); 
Power=[]; 
n=1; 
while n<25; 
    Power=[Power;sum(NUMR(n,2:length(NUMR)))/length(NUMR)]; 
    n=n+1; 
end 
 
AvePower=sum(Power)/24*ones(24,1);  
plot(time,Power,’bo-’,time,AvePower,’kx-’,’linewidth’,2) 
title(‘Single family home: Hourly real power averaged over a year’); 
xlabel(‘time (hours)’), ylabel(‘Real power (kW)’); 
axis([0 23 0 1.5]),grid 
legend(‘P_K_W_-_h_o_u_r_, _a_n_n_u_a_l _a_v_e_r_a_g_e’,’P_K_W_-
_h_o_u_r_, _a_v_e_r_a_g_e’); 

2. M-File for Figures 8 and 9 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%5 September 2012, Single Family Household Data_Plotter 
  
%Data recorded on 9/12/2012 from 0000 to 2400. 
%This file reads raw data obtained using a Power Meter(Fluke 434)  
%hooked up to the distribution panel at my house. The data is  
%exported from the Power Meter(Fluke 434)into an xlsx file which  
%is then read below. From this data a number of plots showing  
%the operating characteristics of a typical house. 
  
%The Power Meter was in Power&Energy mode.  
%Plots can include: Real Power, Reactive Power, Apparent Power,  
%Voltage, Current, Power Factor and Displacement Power Factor 
  
close all 
clear all 
clc 
  
%Read the data from the xlsx file 
%MATLAB drops 2 decimal places(from Excel=62.666651 to MATLAB=62.6667) 
[NUMR,TXTR,RAWR]=xlsread(‘09122012’,’MATLAB’,’A1:K2900’); 
  
%Make the time column vectors for the 24 hours of recording.   
    %The data is recorded at 30 second intervals  
    %(ie 24 hrs = 24*60*2 = 2880 data points.) 
timesec=NUMR(19:2898,1); %Seconds 
timemin=timesec/60;     %Minutes 
timehour=timesec/3600;  %Hours 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%Plot the Real/Reactive/Apparent Power recorded over the time interval 
figure(1) 
Rpower=NUMR(19:2898,2);    %Real Power column vector 
Ipower=NUMR(19:2898,3);    %Reactive Power column vector 
Apower=NUMR(19:2898,4);    %Apparent Power column vector 
  
%Plot the Real/Reactive/Apparent Power recorded over the time interval 
%together. 
plot(timehour,Rpower,’b’,timehour,Ipower,’g’,timehour,Apower,’r’,’linew
idth’,1);  
title(‘Single Family Home: Power from 0000 to 2400 on 9/12/2012’); 
xlabel(‘Time (Hours)’); 
ylabel(‘Power (W/VAR/VA)’); 
legend(‘Real Power (W)’,’Reactive Power (VAR)’,’Apparent Power 
(VA)’,’Location’,’NorthWest’); 
axis([0 max(timehour) min(Apower) max(Apower)]); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%Plot the Total RMS Current over the time interval 
figure(2) 
Acurrent=NUMR(19:2898,7);    %Line A line current column vector 
Bcurrent=NUMR(19:2898,8);    %Line B line current column vector 
  
ABcurrent=Acurrent+Bcurrent; 
plot(timehour,ABcurrent,’m’,’linewidth’,2);  
title(‘Single Family Home: Current from 0000 to 2400 on 9/12/2012’); 
xlabel(‘Time (Hours)’), ylabel(‘Current (Amps)’); 
legend(‘RMS Current (Amps)’,’Location’,’NorthWest’); 
axis([0 max(timehour) 0 max(ABcurrent)]); 

3. M-File for Figures 10, 11 and 12 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%15 September 2012, Load_Operating_Plotter 
  
%This file reads raw data obtained using a Power Meter (Fluke 434) 
%hooked up to the distribution panel at my house or a power cable from 
%the load to an outlet. The data is exported from the Power 
%Meter(Fluke 434)into an xlsx file which is then read below. From this 
%data a number of plots showing the operating characteristics of a 
%typical household load identified below. 
  
close all 
clear all 
clc 
  
%Read the data from the xlsx file (Covers 1 hours worth of data 
%recorded at 1 second data grabs (rows taken from excel file)). 
%MATLAB drops 2 decimal places (from Excel=62.666651 to MATLAB=62.6667) 
[NUMR,TXTR,RAWR]=xlsread(‘Loads’,’MATLAB_Dryer’,’A1:V3620’); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       DRYER 
  
%Power & Energy Mode 
  
%Make the time column vectors for the recording.   
cp3timesec=NUMR(19:1330,15); %Seconds 
cp3timemin=cp3timesec/60;     %Minutes 
  
%Make the Real/Reactive/Apparent Power data vectors 
cp3Rpower=NUMR(19:1330,16);    %Real Power column vector 
cp3Ipower=NUMR(19:1330,17);    %Reactive Power column vector 
cp3Apower=NUMR(19:1330,18);    %Apparent Power column vector 
  
figure(1) 
plot(cp3timemin,cp3Rpower,’b’,’linewidth’,2);  
title(‘Dryer: Real Power’); 
xlabel(‘Time (Minutes)’), ylabel(‘Real Power (Watts)’); 
axis([0 max(cp3timemin) min(cp3Rpower)-10 max(cp3Rpower)+10]); 
figure(2) 
plot(cp3timemin,cp3Ipower,’g’,’linewidth’,2);  
title(‘Dryer: Reactive Power’); 
xlabel(‘Time (Minutes)’), ylabel(‘Reactive Power (Volts-Amps 
Reactive)’); 
axis([0 max(cp3timemin) min(cp3Ipower)-10 max(cp3Ipower)+10]); 
figure(3) 
plot(cp3timemin,cp3Apower,’r’,’linewidth’,2);  
title(‘Dryer: Apparent Power’); 
xlabel(‘Time (Minutes)’), ylabel(‘Apparent Power (Volt-Amps)’); 
axis([0 max(cp3timemin) min(cp3Apower)-10 max(cp3Apower)+10]); 
  
%Plot the RMS line voltage and RMS current recorded. 
cp3voltage=NUMR(19:1330,19);    %RMS Voltage column vector 
cp3current=NUMR(19:1330,20);    %RMS Current column vector 
  
figure(4) 
plot(cp3timemin,cp3voltage,’k’,… 

cp3timemin,cp3current,’m’,’linewidth’,2);  
title(‘Dryer: Line RMS Voltage & RMS Current’); 
xlabel(‘Time (Minutes)’); 
ylabel(‘Current (Amps)          Voltage (Volts)’); 
legend(‘Line Voltage’,’Line Current’,’Location’,’West’); 
axis([0 max(cp3timemin) 0 max(cp3voltage)+10]); 

4. M-File for Figure 13 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%23 September 2012, Load_Operating_Plotter 
  
%Data recorded on 9/27/2012 and 10/1/2012 
%This file reads raw data obtained using a Power Meter(Fluke 434) 
%hooked up to the distribution panel at my house or a power cable 
%from the load to an outlet. The data is exported from the Power  
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%Meter(Fluke 434)into an xlsx file which is then read below.   
%From this data a number of plots showing the operating  
%characteristics of a typical household load identified below. 
  
close all 
clear all 
clc 
  
%Read the data from the xlsx file. 
%MATLAB drops 2 decimal places(from Excel=62.666651 to MATLAB=62.6667) 
[NUMR,TXTR,RAWR]=xlsread(‘Loads’,’MATLAB_Refrigerator’,’A1:T3620’); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       REFRIGERATOR 
  
%Power & Energy Mode 
  
%Make the time column vectors for the recording.   
%The data is recorded at 1 second intervals  
%(ie 1 hrs = 60*60 = 3600 data points.) 
cp3timesec=NUMR(19:437,13); %Seconds 
cp3timemin=cp3timesec/60;     %Minutes 
  
%Plot the Line voltage and current recorded over the time interval 
%together. 
cp3voltage=NUMR(19:437,17);    %A line voltage column vector 
cp3current=NUMR(19:437,18);    %B line voltage column vector 
  
figure 
plot(cp3timemin,cp3current,’m’,’linewidth’,2);  
title(‘Refrigerator: RMS Current’); 
xlabel(‘Time (Minutes)’), ylabel(‘Current (Amps)’); 
legend(‘RMS Current’,’Location’,’SouthWest’); 
axis([0 max(cp3timemin) 0 max(cp3current)+1]); 

5. M-File for Figure 14 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%23 September 2012, Load_Operating_Plotter 
  
%Data recorded on 9/23/2012 
%This file reads raw data obtained using a Power Meter(Fluke 434) 
%hooked up to the distribution panel at my house or a power cable  
%from the load to an outlet. The data is exported from the Power  
%Meter(Fluke 434)into an xlsx file which is then read below.   
%From this data a number of plots showing the operating  
%characteristics of a typical household load identified below. 
  
close all 
clear all 
clc 
  
%Read the data from the xlsx file. 
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%MATLAB drops 2 decimal places (from Excel=62.666651 to MATLAB=62.6667) 
[NUMR,TXTR,RAWR]=xlsread(‘Loads’,’MATLAB_CoffeePot’,’A1:T3620’); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                       COFFEE POT 
  
%Dips & Swells Mode 
  
%Make the time column vectors for the recording.   
    %The data is recorded at 1 second intervals  
    %(ie 1 hrs = 60*60 = 3600 data points.) 
cptimesec=NUMR(19:1906,1); %Seconds 
cptimemin=cptimesec/60;     %Minutes 
  
%Plot the RMS voltage and current over the time interval. 
  
cpvoltage=NUMR(19:1906,2);    %Voltage column vector 
cpcurrent=NUMR(19:1906,3);    %Current column vector 
  
figure(10) 
plot(cptimemin,cpcurrent,’b’,’linewidth’,2);  
title(‘Coffee Pot: RMS Current’); 
xlabel(‘Time (Minutes)’), ylabel(‘Current (Amps)’); 
legend(‘RMS Current’,’Location’,’West’); 
axis([0 max(cptimemin) 0 max(cpcurrent)+1]); 

6. M-File for Figure 27 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%9 September 2012, Simulation_Plotter 
  
%This file calls the EMS simulation and plots the  
%results for comparison. 
  
close all; 
clear all; 
clc 
  
%This runs the simulation and the variables going to 
%the workspace can be plotted or manipulated to show  
%results. 
sim EMS_Peck_Lab;    
  
%This for loop creates a timesec column vector to plot  
%the xaxis of the various plots.  
timesec=ones(1,tstop/tstep+1); 
for n=(1:tstop/tstep+1) 
    timesec(1,n)=n*timesec(1,n); 
end 
timesec=tstep*timesec; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This figure plots the Waveforms to match an O-scope  
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%figure***Instantaneous Values*** 
figure(1); 
hold on 
plot(timesec(300001:500000),8+Waveforms(300001:500000,1)*1/100,... 
    ‘linewidth’,2,’Color’,[0.6 0.6 0]) 
plot(timesec(300001:500000),6+Waveforms(300001:500000,4),... 
    ‘-c’,’linewidth’,2) 
plot(timesec(300001:500000),4+Waveforms(300001:500000,5),... 
    ‘-m’,’linewidth’,2) 
plot(timesec(300001:500000),2+Iload_C_waveform(300001:500000),... 
    ‘-g’,’linewidth’,2) 
plot(timesec(300001:500000),8.*ones(1,200000),’-k’) 
plot(timesec(300001:500000),6.*ones(1,200000),’-k’) 
plot(timesec(300001:500000),4.*ones(1,200000),’-k’) 
plot(timesec(300001:500000),2.*ones(1,200000),’-k’); 
axis([timesec(300001) timesec(500001) 0 10]); 
legend(‘Vcfil*1/100’,’Iems’,’Iload’,’Icritical’); 
xlabel(‘Time (Seconds)’),ylabel(‘Instantaneous Current (Amperes)’); 
title(‘MATLAB Oscilloscope Plot’); 
hold off 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This figure plots Is, Iload,Iems and Imax ****RMS Values**** 
figure(2); 
plot(timesec,RMS_Multimeter(:,2),’-b’,... 
    timesec,RMS_Multimeter(:,3),’-c’,... 
    timesec,RMS_Multimeter(:,4),... 
    ‘-m’,timesec,RMS_Multimeter(:,5),’--k’,’linewidth’,2); 
axis([0 max(timesec) 0 max(RMS_Multimeter(:,2))+1]); 
legend(‘Ils’,’Iems’,’Iload’,’Imax’); 
xlabel(‘Time (Seconds)’),ylabel(‘RMS Current (Amperes)’); 
title(‘Source, Load, EMS and Max Current over time’); 
 

7. M-File for Figure 33, 34 35, and 36 

%Nathan Peck, Thesis: Peak Power Control with an EMS 
%9 September 2012, Simulation_Plotter 
  
%This file calls the EMS simulation and plots the  
%results for comparison. 
  
close all; 
clear all; 
clc; 
  
%The first row in each .mat file is the time vector for  
%the simulation. 
load(‘RMS_Multimeter.mat’); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This figure plots Is, Iload,Iems and Imax ****RMS Values**** 
figure(1); 
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hold on 
plot(RMS_Multimeter(1,:),RMS_Multimeter(3,:),’-b’,’linewidth’,2); 
plot(RMS_Multimeter(1,:),RMS_Multimeter(4,:),’:c’,’linewidth’,2); 
plot(RMS_Multimeter(1,:),RMS_Multimeter(5,:),’--m’,’linewidth’,2); 
plot(RMS_Multimeter(1,:),RMS_Multimeter(6,:),’--k’,’linewidth’,2); 
plot(RMS_Multimeter(1,:),RMS_Multimeter(6,:)/2,’:k’,’linewidth’,2); 
plot(RMS_Multimeter(1,:),RMS_Multimeter(6,:)-27,’-.k’,’linewidth’,2); 
axis([0,max(RMS_Multimeter(1,:)),0,max(RMS_Multimeter(5,:))+1]); 
legend(‘Ils,’Iems’,’Iload’,’Imax’,’Iems On’,’Imax Off’); 
xlabel(‘Time (Seconds)’),ylabel(‘RMS Current (Amperes)’); 
title(‘Source, Load, EMS Current and Current Thresholds’); 
hold off 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%This figure plots Iload_C and Iload_NC, and ***Instantaneous Values*** 
figure(2); 
  
clear all; 
load(‘Waveforms.mat’); 
load(‘Iload_C_waveform.mat’); 
load(‘Iload_NC_waveform.mat’); 
  
hold on 
plot(Waveforms(1,500001:700000),... 
    8+Waveforms(2,500001:700000)*1/100,’linewidth’,2,’Color’,[0.6 0.6 
0]) 
plot(Waveforms(1,500001:700000),... 
    6+Iload_C_waveform(2,500001:700000)*1/40,’-b’,’linewidth’,2) 
plot(Waveforms(1,500001:700000),... 
    4+Iload_NC_waveform(2,500001:700000)*1/40,’-c’,’linewidth’,2) 
plot(Waveforms(1,500001:700000),... 
    2+Iload_NC_waveform(3,500001:700000)*1/40,’-c’,’linewidth’,2); 
plot(Waveforms(1,500001:700000),8.*ones(200000,1),’-k’) 
plot(Waveforms(1,500001:700000),6.*ones(200000,1),’-k’) 
plot(Waveforms(1,500001:700000),4.*ones(200000,1),’-k’) 
plot(Waveforms(1,500001:700000),2.*ones(200000,1),’-k’); 
axis([Waveforms(1,500001) Waveforms(1,700000) 0 10]); 
legend(‘Vcfil*1/100’,’Iload C’,’Iload NC1’,’Iload NC2’); 
xlabel(‘Time (Seconds)’); 
ylabel(‘Instantaneous Current (Amperes)/Voltage (Volts)’); 
title(‘Critical and Non Critical Load Instantaneous Current over 
time’); 
hold off 
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